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1. Introduction 

Summations are central to the calculation of probability in more complex binomial 

distributions. However, effectively using them to solve complex probability systems requires 

a significant level of critical thinking. Today, we will examine this concept through the lens of 

a sample problem: 

 

What is the average number of six-sided die rolls in order to get a 6? [1] 

 

At first glance, the problem seems trivial; since there is a 
1

6
 probability that one rolls a 6 on 

each roll, it should take 6 rolls on average to reach a completely certain probability of 

1

6
 × 6 = 1. This will be our initial conjecture:  

 

The average number of six-sided die rolls needed to get a 6 is 6. (Conjecture) 

 

However, this intuitive approach is not enough to provide a concrete answer to the question; 

this paper will explore how infinite summations come into play in proving the above 

conjecture and their wider application in the field of combinatorics.  

 

2. Background 

a) Binomial Distributions 



A binomial distribution is formally defined as the “discrete probability distribution of obtaining 

exactly 𝑥  successes out of 𝑛  true-false trials where the result of each trial is true with 

probability 𝑝 and false with probability 𝑞 = 1 − 𝑝” [2]. The symbol for such a distribution is 

𝐵(𝑛, 𝑝), with the probability that exactly 𝑥 successes are obtained being 

 

𝑃(𝑥) = 𝑛𝐶𝑥 × 𝑝𝑥(1 − 𝑝)𝑛−𝑥  

 

We can note here that the core problem also indicates such a binomial distribution with 

𝑝 =
1

6
, as it calls for repeated trials of an outcome with probability 

1

6
 (in this case, rolling a 6 

on a six-sided die). Other binomial distributions in daily life include sampling with 

replacement, where the probability field stays constant due to the replacement of samples 

taken from the total set.  

b) Expected Values 

The expected value of a probability distribution is the average resulting value of over a large 

number of trials [3]. In practice, the expected value is calculated by multiplying each possible 

output value by the probability that it will be outputted, that is:  

 

𝐸(𝑥) = ∑ 𝑥𝑖𝑝𝑖

𝑛

𝑖=1

 (1) 

 

Here, the system has 𝑛  different output values 𝑥1  through 𝑥𝑛  with respective 

probabilities 𝑝1 through 𝑝𝑛. In the case of our problem, since we are calculating the average 

number of trials needed to achieve our desired outcome of getting a 6, the values 𝑥1 through 

𝑥𝑛 will be all of the possible numbers of trials that we might undergo in order to accomplish 

our outcome, whereas 𝑝1 through 𝑝𝑛 will be the respective probabilities that the outcome 

will be accomplished in said number of trials. We can also note here that since it is 

theoretically possible to roll a six-sided die an infinite number of times without ever getting a 

6, n is infinite and therefore 𝐸(𝑥) constitutes an infinite summation. 

c) Finite and Infinite Geometric Summations 

An geometric summation is the addition of consecutive terms within an geometric sequence, 

that is, a sequence where each term is the product of the previous term and the common 

ratio 𝑟. Therefore, the summation 𝑆𝑛 of the first 𝑛 terms of the geometric sequence 𝑎𝑛 

with first term 𝑎 and common ratio 𝑟 can be expressed as  

𝑆𝑛 = ∑ 𝑎𝑘 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + 𝑎𝑟4 + ⋯ + 𝑎𝑟𝑛−1

𝑛

𝑘=1

 (2) 



 

However, we can convert Equation 2 into a finite formula for 𝑆𝑛 using a trick that will come 

in handy later during our proof stage:  

 

𝑆𝑛 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + 𝑎𝑟4 + ⋯ + 𝑎𝑟𝑛−1  

𝑟𝑆𝑛 = 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + 𝑎𝑟4 + 𝑎𝑟5 + ⋯ +  𝑎𝑟𝑛  

𝑆𝑛 − 𝑟𝑆𝑛 = 𝑎 − 𝑎𝑟𝑛 

𝑆𝑛(1 − 𝑟) = 𝑎(1 − 𝑟𝑛) 

𝑆𝑛 =
𝑎(1 − 𝑟𝑛)

(1 − 𝑟)
 (3) 

 

In order to calculate an infinite geometric sum, however, we must extend this equation further, 

namely by having n approach to infinity:  

 

𝑆∞ = lim
𝑛→∞

𝑆𝑛 = lim
𝑛→∞

𝑎(1 − 𝑟𝑛)

(1 − 𝑟)
 

 

Here, we can further simplify the equation by dividing it into cases: 

 

lim
𝑛→∞

𝑟𝑛 = ∞ (𝑟 < −1 𝑜𝑟 𝑟 > 1) 

lim
𝑛→∞

𝑟𝑛 = 0 (−1 < 𝑟 < 1) 

 

Since the first case results in a divergent outcome with no meaningful result, we can focus on 

the second result with its unique limitations:  

 

𝑆∞ =
𝑎

1 − 𝑟
 (−1 < 𝑟 < 1) (4) 

 

This equation is the official formula for the summation of an infinite geometric sequence with 

common ratio −1 < 𝑟 < 1; it will be crucial to our approach in solving the original problem.  

  



3. The Proof 

The easiest way to solve infinite-sum problems is usually to list out a couple of terms before 

looking for a pattern.  

For example, when the number of trials is 1, we can find that the probability of getting a 6 in 

one trial is 
1

6
; when the number of trials is 2, we would need to roll a non-6 followed by rolling 

a 6, so the probability is 
5

6
×

1

6
, and so forth. Each subsequent trial adds the rolling of a non-6 

and therefore a factor of 
5

6
 to the result, as seen in this table:  

Table 1: Probability values for number of die rolls ranging from 1 to 5. 

Number of Trials Probability 

1 
1

6
 

2 
5

6
×

1

6
 

3 (
5

6
)

2

×
1

6
 

×
1

6
 

4 (
5

6
)

3

×
1

6
 

 

5 (
5

6
)

4

×
1

6
 

 
 

This allows us to express the expected value 𝐸 as an infinite summation using Equation 2:  

𝐸 = 1 ×
1

6
+ 2 ×

1

6
×

5

6
+ 3 ×

1

6
× (

5

6
)

2

+ ⋯ 

= ∑ 𝑛 ×
1

6
×

∞

𝑛=1

(
5

6
)

𝑛−1

 (5) 

 

Here, we notice that we cannot immediately use the results of Equation 4 to come to a 

constant value due to the factor of n; this infinite sum in particular is known as an arithmetic-

geometric sum, and it is solvable using the method we previously used to derive Equation 3, 

as follows:  

 

𝐸 = 1 ×
1

6
+ 2 ×

1

6
×

5

6
+ 3 ×

1

6
× (

5

6
)

2

+ 4 ×
1

6
× (

5

6
)

3

+ ⋯ 

5

6
𝐸 = 1 ×

1

6
×

5

6
+ 2 ×

1

6
× (

5

6
)

2

+ 3 ×
1

6
× (

5

6
)

3

+ ⋯ 



𝐸 −
5

6
𝐸 = 1 ×

1

6
+ 1 ×

1

6
×

5

6
+ 1 ×

1

6
× (

5

6
)

2

+ 1 ×
1

6
× (

5

6
)

3

+ ⋯ 

 

Now, having arrived at an infinite geometric sum, we can use Equation 4 to reach our answer: 

 

1

6
𝐸 =

1

6
+

1

6
×

5

6
+

1

6
× (

5

6
)

2

+
1

6
× (

5

6
)

3

+ ⋯ 

1

6
𝐸 =

1
6

1 −
5
6

=

1
6
1
6

= 1 

𝐸 = 6 thus proving our original conjecture. 

 

4. Alternative Methods 

a) The “Grid of Infinity” 

Another, more creative method to solving this problem is by splitting Equation 5 into an 

infinite number of infinite summations. The way we go about this is by first artificially 

eliminating the factor of 𝑛 in the front of the equation:  

1 ×
1

6
+ 1 ×

1

6
×

5

6
+ 1 ×

1

6
× (

5

6
)

2

+ 1 ×
1

6
× (

5

6
)

3

+  1 ×
1

6
× (

5

6
)

4

+ ⋯ =  

1
6

1 −
5
6

= 1 

We can then go about rectifying our alterations to the equation, namely by adding another 

infinite geometric summation starting with the term 
1

6
×

5

6
  so that the coefficient for this 

term goes from 1 back to 2, as below:  

1 ×
1

6
+ 1 ×

1

6
×

5

6
+ 1 ×

1

6
× (

5

6
)

2

+ 1 ×
1

6
× (

5

6
)

3

+  1 ×
1

6
× (

5

6
)

4

+ ⋯ =  

1
6

1 −
5
6

= 1 

1 ×
1

6
×

5

6
+ 1 ×

1

6
× (

5

6
)

2

+ 1 ×
1

6
× (

5

6
)

3

+  1 ×
1

6
× (

5

6
)

4

+ ⋯ =  

1
6 ×

5
6

1 −
5
6

=
5

6
 

Now, since the coefficient of the next term 
1

6
× (

5

6
)

2

 is at 2, we can once again add another 

infinite summation starting with 
1

6
× (

5

6
)

2

 to restore the original coefficient of 3, and so on, 

until an infinitely large triangular “grid” is formed: 



1 ×
1

6
+ 1 ×

1

6
×

5

6
+ 1 ×

1

6
× (

5

6
)

2

+ 1 ×
1

6
× (

5

6
)

3

+  1 ×
1

6
× (

5

6
)

4

+ ⋯ =  

1
6

1 −
5
6

= 1 

1 ×
1

6
×

5

6
+ 1 ×

1

6
× (

5

6
)

2

+ 1 ×
1

6
× (

5

6
)

3

+  1 ×
1

6
× (

5

6
)

4

+ ⋯ =  

1
6 ×

5
6

1 −
5
6

=
5

6
 

1 ×
1

6
× (

5

6
)

2

+ 1 ×
1

6
× (

5

6
)

3

+  1 ×
1

6
× (

5

6
)

4

+ ⋯ =  

1
6 × (

5
6)

2

1 −
5
6

= (
5

6
)

2

 

1 ×
1

6
× (

5

6
)

3

+  1 ×
1

6
× (

5

6
)

4

+ ⋯ =  

1
6 × (

5
6)

3

1 −
5
6

= (
5

6
)

3

 

 

By observing the results of these infinite summations, we can see that they themselves form 

an infinite geometric progression with starting term 1 and common ratio 
5

6
 , while the 

deconstructed left-hand sides of the equations add to our original 𝐸  value defined in 

Equation 5. Therefore, we can now arrive at our answer using a straightforward application of 

Equation 4:  

 

𝐸 = 1 +
5

6
+ (

5

6
)

2

+ (
5

6
)

3

+ ⋯ =
1

1 −
5
6

 

𝐸 = 6 

 

b) Inductive Reasoning 

However, the simplest way to solve this problem is by comparing the states before and after 

the first roll. Let us once again assume that the mean number of trials required is 𝐸. If the 

first toss is a success, then the resulting number of trials is clearly 1; if the first toss is a failure, 

given that the probability fields remain unchanged after our failure, there are still 𝑚 trials 

remaining on average, and therefore the average number of trials is 𝐸 + 1. 

This indicates that  

𝐸 =
1

6
× 1 +

5

6
(𝐸 + 1) 

𝐸 −
5

6
𝐸 =

1

6
× 1 +

5

6
 



1

6
𝐸 = 1 

𝐸 = 6 yielding the same result as above. 

 

5. Generalization 

We can also observe that all three lines of reasoning hold for any probability value; simply 

substituting 𝑝 for 
1

6
 and 1 − 𝑝 for 

5

6
 results in the following: 

  

𝐸 = 𝑝 × 1 + (1 − 𝑝)(𝐸 + 1) 

𝐸 − (1 − 𝑝)𝐸 = 𝑝 + 1 − 𝑝 

𝑝𝐸 = 1 

𝐸 =
1

𝑝
 

 

Therefore, we can generalize our original proof and synthesize our findings as follows:  

 

Given repeated random trials of a binomial sample space where outcome A has probability 

𝑝 > 0, 𝐸 =
1

𝑝
 where 𝐸 is the expected number of trials required to yield the first instance of 

A. (Theorem) 

 

6. Extension: Deck of Cards 

A similar expected-value problem worth our attention concerns the gambler’s perennial 

struggle to calculate the odds of drawing an ace:  

 

A standard deck of cards has 52 cards, 4 of which are aces. On average, how many cards must 

be drawn off the top of a standard deck of cards in order for the first ace to be drawn? 

 

Once again, it seems prudent to start by listing some values. Obviously, the probability that an 

ace is drawn on the first card is 
4

52
. For the ace to be drawn on the second card, we would 

need to draw a non-ace (with a probability of 
48

52
 )  followed by drawing an ace with a 

probability of 
4

51
.  Note here the change in the denominator; as we are digging our way 

through the deck, we are sampling without replacement, hence the reduction in number of 



cards remaining. In similar fashion, we can identify the probability values for 1 ≤ 𝑥 ≤ 5 

where 𝑥 is the number of cards drawn, as in the table below.  

Table 3: Probability values for number of cards drawn from 1 to 5. 

Number of Cards Probability 

1 
4

52
 

2 
48

52
×

4

51
 

3 
48

52
×

47

51
×

4

50
 

4 
48

52
×

47

51
×

46

50
×

4

49
 

 

5 
48

52
×

47

51
×

46

50
×

45

49
×

4

48
 

 

6 
48

52
×

47

51
×

46

50
×

45

49
×

44

48
×

4

47
 

 
 

Unfortunately, the changing denominators also mean that we no longer have a finite 

geometric sequence that allows us to simplify this system using Equation 3. However, we can 

notice that the 48’s in both the numerator and the denominator of the result of 𝑥 = 5 cancel 

out, as do both the 48’s and 47’s in the row of 𝑥 = 6. This allows us to deduce that all of the 

other denominators less than 48 must also inevitably cancel each other out, leaving behind a 

denominator of 52 × 51 × 50 × 49.  

Meanwhile, with regards to the numerator, we observe that it also consists of 4 times the 

product of three consecutive integers where the largest integer is 52 − 𝑥; for example, when 

𝑥 = 5 , the highest factor of the numerator is 52 − 𝑥 = 47  and the numerator itself is 

47 × 46 × 45 × 4. Note that this rule applies even to the cases in which reduction does not 

occur; for example, when 𝑥 = 3, artificially creating a denominator of 52 × 51 × 50 × 49 

by multiplying 
49

49
= 1 to the probability yields 

48

52
×

47

51
×

4

50
×

49

49
 and therefore a numerator 

of 49 × 48 × 47 × 4 as consistent with the pattern. 

This allows us to express the probability 𝑃(𝑛) for 𝑥 = 𝑛 as follows: 

 

𝑃(𝑛) =  
4(52 − 𝑥)(51 − 𝑥)(50 − 𝑥)

52 × 51 × 50 × 49
 

 

In turn, we can now use Equation 2 once again to calculate the expected value 𝐸 for all 𝑥 

values from 1 (ace on the first card) to 49 (all of the non-ace cards plus one ace are drawn) 

 



𝐸 = ∑
4(52 − 𝑥)(51 − 𝑥)(50 − 𝑥)

52 × 51 × 50 × 49

49

𝑥=1

  

 

Using the summation formulas (which lie outside the scope of this investigation), we can 

calculate that 𝐸 = 10.6; that is, a gambler would need to draw 10.6 cards on average off the 

top of a random 52-card deck before getting his hands on an ace.  

 

7. Conclusion 

Through this investigation, we were able to explore various applications of finite and infinite 

summations in probability, particularly when pertaining to expected values and repeated trials. 

The problem-solving techniques and theorems developed throughout this inquiry are 

applicable to many other types of unique binomial distributions in a relatively lesser-known 

branch of combinatorics.  
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