
2019 ARML Local Problems and Solutions

Team Round (45 minutes)

T-1 Compute the number of ordered pairs of positive integers (x, y) that satisfy the equality xy = 29!.

Answer: 160

Solution: The given equation implies x is a power of 2, so let x = 2z for some nonnegative
integer z. Then 2zy = 29!, so yz = 9!. The number of pairs satisfying the equality is equal to the
number of positive divisors of 9! = 27×34×5×7, and σ(9!) = (7+1)(4+1)(1+1)(1+1) = 160 .

T-2 Let PQRS be a rectangle and let A, B, C, and D be points such that A is on PQ, D is on RS,
and B and C are inside the rectangle such that AB ‖ PS, AB ⊥ BC, and BC ⊥ CD. Point
E lies on RS such that AE intersects BC and [PABCDS] = [PAES]. Given that AB = 30,
BC = 24, and CD = 10, compute DE.

Answer: 12

Solution: Let F be the point of intersection of AE and BC. Let y = DE and G be on
FC such that EG ⊥ BC. Since the two polygon areas are the same, the area of �AFB
and trapezoid FEDC are the same. Note EG = CD = 10 is the height of the trapezoid.
Furthermore, �AFB ∼ EFG so AB

EG = BF
GF , implying BF = 3GF . Letting x = GF , it follows

that BF = 3x so BC = 4x + GC. Since GC = DE, it follows 4x + y = 24. Then, the area

of �AFB is 30·3x
2 = 45x and the area of FEDC is 10(y+x+y)

2 = 5(x + 2y). Equating these two

areas yields 9x = x+ 2y or y = 4x. Therefore, 24 = y + 4x = 2y so y = 12 .

T-3 Given that the numbers log2(log2 x), log4(log4 x), and log16(log16 x) form an arithmetic progres-
sion in that order, compute x.

Answer: 4
√
2 or 21/4

Solution: The given condition translates to the equation log2(log2 x) + log16(log16 x) =
2 log4(log4 x). To solve this equation, let y = log2 x. Then, by the change-of-base formula,

log16 x = log2 x
log2 16

= y
4 and log4 x = log2 x

log2 4
= y

2 , so it follows that log2 y + log16
y
4 = 2 log4

y
2 , or

log2 y+log16 y− log16 4 = 2 log4 y−2 log4 2, which simplifies to log2 y+log16 y+
1
2 = 2 log4 y. Let

z = log2 y. Then, by similar logic, log16 y = z
4 and log4 =

z
2 , so it follows that z + z

4 +
1
2 = 2 · z2 .

Solving for z gives z = −2. Then y = 2z = 2−2 = 1
4 , so x = 2y =

4
√
2 .

T-4 Compute the maximum value of the function f(x) = sin(x) + sin(x + cos−1 4
7) as x varies over

all real numbers.



Answer:
√
154
7

Solution: Note that

f(x) = sin(x)[1 + cos(cos−1 4
7)] + cos(x)[sin cos−1 4

7 ]

≤
√
(1 + cos(cos−1 4

7))
2 + (sin(cos−1 4

7))
2

=
√
2 + 2 cos(cos−1 4

7) =
√

2 + 8
7 =

√
22
7 =

√
154
7 .

T-5 Lulu the Magical Pony has developed a wagering strategy for seven days at the casino. He plays
the same game five times each day, but wagers different amounts each day. For 1 ≤ N ≤ 7, on
day N , for each play of the game he either wins $2 × 5N−1 or loses $5N−1. At the end of the
week, Lulu has a profit of $20,119. Compute the total number of games that Lulu won over the
week.

Answer: 14

Solution: Let ai be the number of times Lulu wins on day i. Then, his profit, in dollars, on
day i is 2ai5

i−1−(5− ai) 5
i−1 = 3ai ·5i−1−5i. Summing this expression from i = 1 to i = 7 yields

3
7∑

i=1

ai5
i−1− 58 − 5

5− 1
= 3

7∑
i=1

ai5
i−1−97655→ 3

7∑
i=1

ai5
i−1 = 97655+20119 = 117774. Therefore,

7∑
i=1

ai5
i−1 = 39258 and the goal is to compute

7∑
i=1

ai. Each ai can be determined by representing

39258 in base 5. Since 39258 = 22240135, Lulu won

7∑
i=1

ai = 2 + 2 + 2 + 4 + 0 + 1 + 3 = 14

games.

T-6 Let T be an isosceles trapezoid such that there exists a point P in the plane of T whose distances
to the four vertices of T are 5, 6, 8, and 11. Compute the greatest possible ratio of the length
of the longer base of T to the length of its shorter base.

Answer: 57
11

Solution: Suppose ABCD is the trapezoid with BC ‖ AD and BC < AD. Let PA = a,
PB = b, PC = c, and PD = d; the problem stipulates that {a, b, c, d} = {5, 6, 8, 11}.

Let Q be the intersection of
←→
AB and

←→
CD, and set QB = QC = s, BA = CD = t, and

PQ = r. Stewart’s Theorem on �APQ and �BPQ yields the system of equations

r2t+ a2s = b2(s+ t) + st(s+ t) and r2t+ d2s = c2(s+ t) + st(s+ t).

Subtracting these two equations and utilizing �QBC ∼ �QAD yields

AD

BC
=

s+ t

s
=

d2 − a2

c2 − b2
.



This ratio has a maximum of 57
11 , achieved at (a, b, c, d) = (8, 5, 6, 11).

T-7 Let f(x) = x2 − 2
√
2x + 3. Define the functions gn

(
f(x)

)
such that g1

(
f(x)

)
= f(x) and

gn+1

(
f(x)

)
= f(x)gn(f(x)) for all n ≥ 1. Compute the sum of all distinct real values x such that

g2019(f(x)) = 2019.

Answer: 2
√
2

Solution: If g2019(f(x)) = 2019, it follows that f(x) > 1. Let a = f(x) so aa
a

...
= 2019

(where the exponent is taken 2019 times), and it also follows that a > 1. By definition, x is a
solution to g2019(f(x)) = 2019 if and only if x is a solution to x2 − 2

√
2x + (3 − a) = 0. The

discriminant of the left hand side shows that there are two distinct real solutions, and therefore,

by Vieta, the sum of all such x is 2
√
2 .

T-8 Integers a, b, c, d, e, and f are chosen uniformly at random and with replacement from the set
{1, 2, . . . , 12}. Compute the probability that abcdef − 1 is divisible by 3.

Answer: 1
6

Solution: Consider the expression abcdef − 1 modulo 3. The integers a, c, and e are equally
likely to be any of the three residues modulo 3. If any of them is 0 (mod 3), then the entire
expression becomes 0− 1 ≡ 2 (mod 3), so none of a, c, and e can be 0 (mod 3); they must each
be either 1 (mod 3) or 2 (mod 3).

With probability
(
1
3

)3
= 1

27 , all three of a, c, and e are 1 (mod 3), which makes

abcdef − 1 ≡ 1b1d1f − 1 = 0 (mod 3),

as desired. The probability that each variable is either 1 (mod 3) or 2 (mod 3) is
(
2
3

)3
= 8

27 ; the

probability that that occurs but not all the variables are 1 (mod 3) is 8
27 − 1

27 = 7
27 . In this case,

the expression reduces to

abcdef − 1 ≡ 2x − 1 (mod 3),

where x is the sum of the exponents on the variables which are 2 (mod 3). (For example, if
a ≡ 1 (mod 3) and c ≡ e ≡ 2 (mod 3), then abcdef − 1 ≡ 2d+f − 1 (mod 3), so x = d + f .)
Because b, d, and f are equally likely to be odd or even, the variable x is also equally likely
to be odd or even. (In general, if a1, . . . , ak are equally likely to be odd or even, then their
sum a1 + · · · + ak is also equally likely to be odd or even, because regardless of the values of
a1, . . . , ak−1, the parity of ak is equally likely to be the same as the parity of a1 + · · · + ak−1,
making the sum even, or different, making the sum odd.)

Since 22 ≡ 1 (mod 3), it follows that 2x − 1 is equally likely to be 21 − 1 ≡ 1 (mod 3) or
22−1 ≡ 0 (mod 3). So, the probability that abcdef −1 is divisible by 3 in this case is 7

27 · 12 = 7
54 .

In total, the desired probability is 1
27 + 7

54 = 1
6 .



T-9 Positive numbers x, y, and z satisfy x3y2z = 36. Compute the least possible value of 2x+y+3z.

Answer: 6
√
2

Solution: Note that 2x+y+3z =
(
2x
3 + 2x

3 + 2x
3

)
+
(y
2 + y

2

)
+3z. Therefore, by the AM-GM

inequality, 2x+y+3z
6 ≥ 6

√
8
27 × 1

4 × 3× x3y2z = 6
√
8 =

√
2. Equality occurs when 2x

3 = y
2 = 3z so

(x, y, z) =
(
3
√
2

2 , 2
√
2,
√
2
3

)
and 2x+ y + 3z = 6

√
2 .

T-10 Compute the least positive value of θ in radians for which sin θ+ sin(2θ) + · · ·+ sin(2019θ) = 0.

Answer: π
1010

Solution: In general:

n∑
k=1

sin kθ =

∑n
k=1 2 sin

θ
2 sin kθ

2 sin θ
2

=

∑n
k=1

(
cos

(
k − 1

2)θ − cos(k + 1
2)θ

))
2 sin θ

2

(telescoping sum) =
cos θ

2 − cos
(
nθ + θ

2

)
2 sin θ

2

Therefore, for the above expression to be equal to zero, for some integer k either nθ = 2πk or
nθ+ θ

2 = 2πk− θ
2 → (n+1)θ = 2πk. When n = 2019, the least positive value of θ that satisfies

one of these equations occurs when k = 1 and θ =
π

1010
.

T-11 In �ABC, D is on BC such that AD ⊥ BC. Let P and Q be the incenters of �ABD and
�ADC, respectively. Given that BC = 14, AD = 12, CD = 5, and O is the circumcenter of
�ABC, compute [OPQ].

Answer: 53
16

Solution: Using coordinates: let B = (0, 0), C = (14, 0), A = (9, 12), and D = (9, 0).
Suppose O = (7, y), then 72 + y2 = OC2 = OA2 = 22 + (y − 12)2 → y = 33

8 so O = (7, 338 ).

Then, the inradius of �ABD is 9+12−15
2 = 3 and the inradius of �ADC is 5+12−13

2 = 2 since
both are right triangles. Therefore, P = (6, 3) and Q = (11, 2). By the shoelace formula, the

area of OPQ is 1
2

∣∣6(2) + 11(338 ) + 7(3)− 3(11)− 2(7)− (338 )(6)
∣∣ = 53

16
.



T-12 For integers n ≥ 2, let h(n) be the number of positive integers x ≤ n such that x2 ≡ 1 (mod n).
Compute the greatest integer n ≥ 2 such that h(n) = φ(n), where φ(n) is the number of positive
integers less than or equal to n that are relatively prime to n.

Answer: 24

Solution: The function h is multiplicative so it suffices to determine when h (pα) = φ (pα)
for prime p. If p is odd, then pα divides x2 − 1 = (x − 1)(x + 1) implies either pα divides
x− 1 or pα divides x+ 1 (otherwise, p divides (x+ 1)− (x− 1) = 2, contradiction). Therefore
x2 ≡ 1 mod pα if and only if x ≡ ± mod pα, so h (pα) = 2. Since φ (pα) = pα−1(p− 1), it follows
that φ (pα) = 2 implies p = 3 and α = 1. Consider the case where h (2α) = φ (2α). This is
true for 0 ≤ α ≤ 3. When α > 3, 2α divides (x− 1)(x+ 1). Since only one of these factors are
divisible by 4, it follows that x ≡ ±1 mod 2α−1. Therefore, h (2α) = 4 < 2α−1 = φ (2α) so there
are no such powers of two. Therefore, h(n) = φ(n) if and only if n = 2a ·3b where a ∈ {0, 1, 2, 3}
and b ∈ {0, 1}. Therefore, the greatest such integer is n = 24 .

T-13 Compute the number of functions f : {1, 2, . . . , 20} → {1, 2, 3, 4} such that f(m) divides f(n)
whenever m divides n, and m and f(m) have the same parity for all m ∈ {1, 2, . . . , 20}.

Answer: 3296

Solution: Note that f(n) = 1 for all odd n ≤ 10 (if f(n) = 3, then f(2n) is even and divisible
by 3, which is a contradiction because no value in the range is a multiple of 6). The function
values for odd numbers greater than 10 can either be 1 or 3, so there are 25 possible assignments
of values to the odd integers in the domain.

Consider the greatest positive integer α such that f (2α) = 2.
f(2) = 4 In this case f(n) = 4 for all even values of n.
2α = 2 In this case, f(4) = f(8) = f(12) = f(16) = f(20) = 4 while f(10) and f(14) can be either

2 or 4, but f(6) | f(18). This gives 12 possibilities.
2α ≥ 4 In these cases, f(14) can be 2 or 4, f(6) | f(12), f(6) | f(18), and f(10) | f(20). This

results in 30 possible cases for each.
Therefore, there is a total of 25(1 + 12 + 3 · 30) = 3296 such functions.

T-14 Let Ω be a circle with radius 5, and suppose that A, B, C, and D are points on Ω in that order
such that AB = BC = CD = 4. Compute the radius of the circle shown in the figure below

that is tangent to AC, BD, and minor arc ÂD.



A

B C

D

Answer: 2
√
21− 5

Solution: Let X, Y , and M denote the tangency points of the circle to AC, BD, and ÂD
respectively. Note that by Archimedes’ Lemma, B, X, and M are collinear; C, Y , and M are

collinear; and M is the midpoint of ÂD.

A

B C

D

X Y

M

The crucial claim is that AX = XY = Y D. Indeed, note that from ∠ABM = ∠DBM and
∠BAC = ∠DAC, X is the incenter of �ABD; and therefore M is the circumcenter of �AXD1

1See http://web.evanchen.cc/handouts/Fact5/Fact5.pdf



which gives AM = MX = MD. By the same argument MY is also equal to all these lengths.
But now ∠AMB = ∠BMC = ∠CMD yields �AMX ∼= �XMY ∼= �YMD, which gives
AX = XY = Y D.

To finish, note that �AMX being isosceles implies that �BCX is isosceles, so BX = CX =
4. The Law of Sines yields sin∠BCA = 2

5 , and it follows that AC = 8
5

√
21. Thus XY = AX =

4(25
√
21− 1), so letting r denote the radius of the desired circle, using homothety gives

r
5 = XY

4 = 2
5

√
21− 1 ⇒ r = 2

√
21− 5 .

T-15 Given that
∞∑
k=0

(
2k

k

)
1

5k
=
√
5, compute the value of the sum

∞∑
k=0

(
2k + 1

k

)
1

5k
.

Answer: 5
2(
√
5− 1) or

5
√
5− 5

2

Solution: Note that from the identity
(
n
k

)
= n

k

(
n−1
k−1

)
, it follows that(

2k + 1

k

)
=

k + 1

2k + 2

(
2k + 2

k + 1

)
=

1

2

(
2k + 2

k + 1

)
.

Thus
∞∑
k=0

(
2k + 1

k

)
1

5k
=

1

2

∞∑
k=0

(
2k + 2

k + 1

)
1

5k
=

5

2

∞∑
n=1

(
2n

n

)
1

5n
=

5

2
(
√
5− 1) .



Individual Round (10 minutes per pair)

I-1 Compute the least positive integer n such that 2n and 3n both contain the digit 7 when written
in base ten.

Answer: 39

Solution: Since 2n is always even, if 2n contains the digit 7, then 2n ≥ 70, or n ≥ 35. Trying
values of n starting with 35, n = 39 is the first one that works, with 2n = 78 and 3n = 117.

I-2 Circle C lies entirely inside rectangle R, and C is tangent to three of the sides of R. Given that
the ratio of the area of C to the area of R is π

5 , compute the ratio of the circumference of C to
the perimeter of R.

Answer: 2π
9

Solution: Let r be the radius of C. Then one of the side lengths of R is 2r. Let the other side

length be s. Then the area of C is πr2 and the area of R is 2rs, so πr2

2rs = π
5 . This gives s = 5r

2 .

Now, the circumference of C is 2πr and the perimeter of R is 2(2r + s) = 2(2r + 5r
2 ) = 9r, so

the desired ratio is 2πr
9r = 2π

9 .

I-3 Compute the sum of all integers k with 1 ≤ k ≤ 2019 such that (2k − 1)2 = 1 + k × 10k/13.

Answer: 26

Solution: Expanding the left hand side gives 4k2− 4k = k× 10k/13 so 4k− 4 = 10k/13. Note
that 10k/13 must be an integer so k is divisible by 13. Therefore, when k ≥ 39, 10k/13 > 4k so
it suffices to check k = 13 and k = 26. Only k = 26 is a solution.

I-4 Exactly five distinct vertices of a regular 12-gon are randomly colored red, with all vertices
equally likely to be colored. Compute the probability that no edge of the 12-gon has both its
vertices colored red.

Answer: 1
22

Solution: Label the vertices in order v1, v2, . . . , v12. Let R be the set of red vertices. Assume
without loss of generality that v1 ∈ R, then there are

(
11
4

)
= 330 ways to select the remaining

four vertices in R. Call a set R edge-free if it does not contain both vertices of an edge of the
12−gon. Consider the five possible cases of the vertex (or vertices) in an edge-free R that is/are
furthest from v1: either v6, v7, v8, v6 and v8, or v5 and v9. For any other cases, it is impossible
to have the remaining elements in R not share an edge with another vertex in R. Note that
neither v2 nor v12 can be in an edge-free R that contains v1.



– v6: R cannot contain v5, v7, or v8, which forces one of v3 or v4, plus v9 and v11 to be in
R for it to be edge-free. By symmetry, there are only two edge-free sets for the case of v8
being furthest as well.

– v7: R cannot contain v6 or v8. There will be two remaining vertices of R clockwise from
v7 to v1 and one counter-clockwise, or vice versa. The side that has two is forced to be v9
and v11 or v3 and v5, the vertex on the other side can be any of the three not adjacent to
v1 or v7. This makes six edge-free sets in total.

– v6 and v8: R cannot contain v5, v7, or v9. The two remaining vertices must be one of v10
or v11 and v3 or v4. This results in four edge-free sets.

– v5 and v9: R can only contain v3 and v11 and be edge-free.

In total, there are 15 edge-free sets of size five, so the probability is 15
330 =

1

22
.

I-5 Triangle SAM lies in the coordinate plane with S = (−15, 0), A = (0, 36), and M = (15, 0).
There is a unique point B = (x, y) in the interior of �SAM such that the perimeters of �BSA,
�BAM , and �BMS are equal. Compute x+ y.

Answer: 20

Solution: Note that �SAM is isosceles with SM = 15− (−15) = 30 and

AS = AM =
√
(0− (−15))2 + 362 =

√
(0− 15)2 + 362 =

√
152 + 362 =

√
32(52 + 122) = 3 · 13 = 39.

Note that point B must lie on the altitude AH from A to SM , for if this were not the case,
then by symmetry, the reflection of B across AH—call it B′—would also satisfy the given
constraints, implying that B was not unique. Hence BS = BM , and it therefore suffices to
equate the perimeters of �BAM and �BSM . It also follows that H is the midpoint of SM ,
hence x = −15+15

2 = 0. Thus

BA+BM +AM = BS +BM + SM

=⇒ BA+AM = BS + SM

=⇒ (36− y) + 39 =
√
(0− (−15))2 + (y − 0)2 + 30

=⇒ 45− y =
√
152 + y2

=⇒ y2 − 90y + 452 = y2 + 152

=⇒ 90y = 452 − 152.

Factoring the right-hand side of the last equation gives 90y = (45− 15)(45 + 15) = 30 · 60 and

dividing each side by 90 yields y = 20, hence x+ y = 20 .

I-6 The function f(x) = x4 + ax3 + bx2 + 2000x+ d has four distinct roots. Two of the roots sum
to 5; the other two roots also sum to 5. Compute b.

Answer: −375



Solution: Let r1, r2, s1, and s2 be the four roots, with r1 + r2 = s1 + s2 = 5. By Vieta’s
formulas:

−2000 = r1r2s1 + r1r2s2 + r1s1s2 + r2s1s2.

This equation factors as follows:

−2000 = r1r2(s1 + s2) + (r1 + r2)s1s2.

The terms in parentheses both equal 5, so −400 = r1r2 + s1s2. Now, by Vieta again,

b = r1r2 + r1s1 + r1s2 + r2s1 + r2s2 + s1s2

= (r1r2 + s1s2) + (r1 + r2)(s1 + s2)

= −400 + (5)(5) = −375 .

I-7 Compute the sum of all possible values for d that satisfy the following property: there exists a
positive integer n with exactly 15 divisors such that 2n has exactly d divisors.

Answer: 84

Solution: Since n has 15 = 3151 divisors, either n = p14 for some prime p, or n = p4q2 for
some distinct primes p and q. If n = p14, then either p = 2, in which case 2n = 215 has 16
divisors, or p �= 2, in which case 2n = 21p14 has 2 · 15 = 30 divisors. If n = p4q2 and p = 2, then
2n = 25q2 has 6 · 3 = 18 divisors. If n = p4q2 and q = 2, then 2n = p423 has 5 · 4 = 20 divisors.
If p �= 2 and q �= 2, then 2n = 21p4q2 has 2 · 5 · 3 = 30 divisors, a value already found. Therefore
the answer is 16 + 30 + 18 + 20 = 84 .

I-8 Let θ = 1
2 sin

−1 2
3 . Compute sin4 θ + cos4 θ.

Answer: 7
9

Solution: Notice that

sin4 θ + cos4 θ = (sin2 θ + cos2 θ)2 − 2 sin2 θ cos2 θ = 1− 2 sin2 θ cos2 θ.

Using the double-angle formula, this can be rewritten as

1− 2 sin2 θ cos2 θ = 1− 1
2 (2 sin θ cos θ)

2 = 1− 1
2 sin

2(2θ).

Since 2θ = sin−1 2
3 , it follows that sin(2θ) =

2
3 , so 1− 1

2 sin
2(2θ) = 1− 1

2

(
2
3

)2
= 7

9 .

I-9 Let P be a set of five points in the plane, no three of which are colinear. Let S be the set of all
line segments between two points in P . Compute the number of subsets of S such that exactly
four triangles have all their edges in S.

Answer: 40



Solution: The segments in S form ten triangles. The removal of any single segment from
S eliminates three triangles. Accordingly, removing any pair of segments that share no points
in common will eliminate six triangles, leaving four. Removing two edges that share a point
(say p) in common removes five triangles in total, leaving five. If another edge containing p as a
vertex is removed, another triangle is removed, leaving four. Finally, if the last edge containing
p is removed, no additional triangles are removed. There are 15 pairs of disjoint segments in S,
and there are 5 choices of p and 5 choices of a single (or no) edge to retain containing p, so there

are 15 + 25 = 40 subsets of S that contain exactly four triangles.

I-10 Let m and n be positive integers. When the point (15, 17) is reflected across the line y = mx
and then the reflected point is reflected across the line y = nx, the resulting point is (17, 15).
Compute m+ n.

Answer: 256

Solution: Let θ be the angle from the ray y = mx to the ray y = nx in the first quadrant.
Then a reflection of (15, 17) over these two lines in succession constitutes a rotation through an
angle of 2θ. Therefore, θ must be in the clockwise direction, so m > n, and 2θ must equal the
angle between �1 and �2, where �1 is the line y = 17

15x and �2 is the line y = 15
17x. Letting � denote

the line y = x, it follows that �1 and �2 are reflections of each other over �, so θ must equal the
angle between � and �2.

The angle between the positive x-axis and the line y = kx is arctan k, so it follows that

arctanm− arctann = arctan 1− arctan 15
17 .

Taking the tangent of both sides and using the difference identity for tangents gives

m− n

1 +mn
=

1− 15
17

1 + 15
17

=
1

16
.

Cross-multiplying gives 16m−16n = 1+mn, or mn−16m+16n+1 = 0. Subtracting 257 from
both sides, this factors as

(m+ 16)(n− 16) = −257.
Since 257 is a prime number and m,n > 0, the only possibility is that m + 16 = 257 and
n− 16 = −1, which gives (m,n) = (241, 15), so m+ n = 256 .



Relay Round (6, 8, 10 minutes)

R1-1 Three 1 × 1 squares in a 3 × 3 grid are chosen randomly and colored orange. Compute the
probability that no row or column of the grid contains more than one orange square.

Answer: 1
14

Solution: There are
(
9
3

)
= 84 possible colorings of 3 out of 9 squares in the grid. Exactly six

of them have exactly one orange square in each row and column. Such a coloring would have to
have one orange square in each column, let ri be the row of the orange square in column i, the
ri must be distinct, and there are 3! = 6 possible assignments of the ri. Therefore the desired

probability is 6
84 =

1

14
.

R1-2 Let T = TNYWR. Compute the sum of the prime factors of
1− T 2

T 3
.

Answer: 30

Solution: Let N =
1− T 2

T 3
, then N =

1

T 3
− 1

T
=

1

T

(
1

T 2
− 1

)
=

1

T

(
1

T
− 1

)(
1

T
+ 1

)
. As

T = 1
14 , N = 14× 13× 15, which has prime factors 2, 3, 5, 7, and 13. The sum of these prime

factors is 30 .

R2-1 Let a1, a2, a3, . . . be a nonconstant arithmetic sequence. Suppose that a1, a11, a111 is a geometric
sequence. Compute a11/a1.

Answer: 10

Solution: If r is the common ratio, then a11 = ra1 and a111 = r2a1, so a11 − a1 = (r − 1)a1
and a111 − a11 = (r2 − r)a1. Therefore,

a111 − a11
a11 − a1

=
(r2 − r)a1
(r − 1)a1

= r.

If d is the common difference of the arithmetic sequence, then a111− a11 = 100d and a11− a1 =
10d, so

a111 − a11
a11 − a1

=
100d

10d
= 10.

Thus, r = 10 .



R2-2 Let T = TNYWR. Frank has a 3 × T grid of squares. Compute the number of ways that
Frank can shade some (possibly none) of the squares in the grid, such that each row and column
contains at most one shaded square.

Answer: 1021

Solution: Frank can shade 0, 1, 2, or 3 squares. There is 1 way for Frank to shade 0 squares,
and there are 3T ways for Frank to shade 1 square. To shade 2 squares, Frank can pick the first
square in 3T ways and the second square in 2(T −1) ways; but the order of the squares does not
matter, so the total number of ways to shade 2 squares is 3T ·2(T −1) · 12 = 3T (T −1). Similarly,
to shade 3 squares, Frank can pick the squares in 3T ·2(T−1)·1(T−2) ways, but since the order of
the squares does not matter, the total number of ways is 3T ·2(T−1)·1(T−2)· 13! = T (T−1)(T−2).
So the answer is

1 + 3T + 3T (T − 1) + T (T − 1)(T − 2) = T 3 + 2T + 1.

With T = 10, the answer is 103 + 2 · 10 + 1 = 1021 .

R2-3 Let T = TNYWR. Let N be the positive integer created by joining T copies of T . (For
example, if T = 15, then N is the 30-digit integer 151515 . . . 15.) Compute the remainder when
N is divided by 99.

Answer: 70

Solution: It suffices to determine N modulo 9 and modulo 11. To find N modulo 9, note
that if the sum of the digits of T is s, then the sum of the digits of N is T · s. But by the
divisibility rule for 9, T ≡ s (mod 9), so N ≡ T · s ≡ s2 (mod 9).

To find N modulo 11, use the divisibility rule for 11. First, if T has an odd number of
digits and T is even, then in the alternating sum of digits of N, all the terms will cancel out,
making N ≡ 0 (mod 11). If T has an odd number of digits and T is odd, then all the terms will
cancel except for the rightmost appearance of T, which means that N ≡ T (mod 11). On the
other hand, if T has an even number of digits, then the alternating sum of digits of N equals
T times the alternating sum of digits of T . If s′ is the alternating sum of digits of T, then
N ≡ T · s′ ≡ (s′)2 (mod 11).

With T = 1021, the digit sum is s = 4, so N ≡ s2 ≡ 7 (mod 9). Also, T has an even number
of digits and s′ = 1− 2 + 0− 1 = −2, so N ≡ (s′)2 ≡ 4 (mod 11). These two congruences imply

that N ≡ 70 (mod 99).

Alternate Solution: Because 100 ≡ 1 (mod 99), if N = a2ka2k−1 . . . a2a1, then N ≡
a2ka2k−1 + · · · + a2a1 (mod 99). If T has an even number of digits, and S is the pairwise-
digit sum of T , then N ≡ S2 (mod 99). If T has an odd number of digits (say k), then let R be
the 2k digit number consisting of two copies of T , and N ≡ T + (T − 1)/2×R (mod 99). Since

T = 1021, S = 31 and N ≡ 961 (mod 99) ≡ 9 + 61 ≡ 70 (mod 99).



R3-1 Given that (2019 + 100)2 − (2019 − 100)2 = 20N , compute N .

Answer: 21

Solution: Let x = 2019, then the left hand side is (x + 100)2 − (x − 100)2 = (x2 + 200x +

10000)− (x2 − 200x+ 10000) = 400x = 202x, so N = 21 .

R3-2 Let T = TNYWR. Given that a rectangle has area T and perimeter T − 1, compute the length
of the shorter side of the rectangle.

Answer: 3

Solution: Let x and y be the lengths of the sides of the rectangle, then 2x + 2y = T − 1

and xy = T , combining the two equations gives x =
2y + 1

y − 2
. Provided y �= 2, plugging this

expression into the rectangle area formula gives 2y2 + y = T (y − 2). As T = 21, this simplifies
to 2y2 + y = 21y− 42→ 2y2− 20y+42 = 0, which factors to 2(y− 3)(y− 7) = 0. Therefore the

shorter edge of the rectangle has length 3 .

R3-3 Let T = TNYWR. Let N be the sum of all positive integers which divide 27(T 8− 1). Compute
the remainder when N is divided by 100.

Answer: 32

Solution: Let S = 27(T 8 − 1). By difference of squares, S = 27(T 2 − 1)(T 2 + 1)(T 4 + 1) =
212 · 5 · 41 for T = 3. Note that N = σ(S) = σ(212)σ(5)σ(41) =

(
213 − 1

)
(6)(42). Therefore,

N ≡ 91 · 52 ≡ 32 mod 100.

R3-4 Let T = TNYWR. Fran flips four fair coins and rolls a standard, fair six-sided die. Let p
be the probability that the number rolled on the die is equal to the number of heads flipped.
Compute pT .

Answer: 5

Solution: If Fran flips 0 heads, then it is impossible for the result of the die roll to equal the
number of heads flipped. On the other hand, if Fran flips a nonzero number of heads (1, 2, 3,
or 4 heads), then there is always a 1

6 probability that the die roll matches the number of heads

flipped. The probability that Fran flips 0 heads is
(
1
2

)4
= 1

16 , so the probability that Fran flips

a nonzero number of heads is 1− 1
16 = 15

16 . Therefore, p = 15
16 · 16 = 5

32 , and pT = 5 .



R3-5 Let T = TNYWR. In �ABC, point M is the midpoint of BC and D is the foot of the altitude

from A to BC, with D between B and M . Given that AC = T, AM = 4, and BD =
3

4
,

compute AB.

Answer:
√
15

Solution: Let DM = x. Since M is the midpoint of BC, it follows that CM = BM = x+ 3
4 .

A

B CMD

3/4 x x+ 3/4

4 T

By the Pythagorean theorem on �ADM and �ADC, it follows that AD2 + x2 = 42 and
AD2 + (2x + 3

4)
2 = T 2. Subtracting these two equations, (2x + 3

4)
2 − x2 = T 2 − 42, which for

T = 5 simplifies to 3x2 + 3x− 135
16 = 0, or x2 + x− 45

16 = 0. This factors as (x+ 9
4)(x− 5

4) = 0,

so x = 5
4 .

Then AD =
√

42 − (54)
2 =

√
231
16 , so AB =

√
AD2 + (34)

2 =
√

240
16 =

√
15 .

R3-6 Let T = TNYWR. For a positive integer n, let Sn be the sum of the first n positive integers.
Compute the remainder of ST 4 when divided by 9.

Answer: 0

Solution: The numbers described are the triangular numbers, whose residues modulo 9 form
a 9-cycle: 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, . . .. T =

√
15, so T 4 = 152 = 225, a multiple of 9, so the

remainder is 0 .



Tiebreaker (10 minutes)

TB Compute the number of orderings of the numbers 1, 2, . . . , 9 with the following property: if m
comes before n in the ordering, then m < n2.

Answer: 3240

Solution: The given condition amounts to the following: 1 must come first in the permu-
tation; 2 must come before 4, 5, 6, . . . , 9; and 3 must come before 9. After placing 1, it follows
that 2 must either be in the second or third spot. If 2 is in the second spot, then of the 7!
possible permutations of 3, 4, . . . , 9, exactly 1

2 of them have 3 before 9, so there are 7!
2 possible

permutations. If 2 is in the third spot, then 3 must be in the second spot, and all 6! possible
permutations of the remaining numbers 4, 5, . . . , 9 work. So the total number of permutations
is 7!

2 + 6! = 5040
2 + 720 = 2520 + 720 = 3240 .




