
PUPC Grading Scheme

November 17, 2017

General Guidelines

Error propagation: If an answer to a question is wrong but used consistently through-
out the rest of the problem (and the calculations involving the wrong answer are
correct) only deduct the points for the wrong answer and give full marks for the
following answers even if they no longer match the answer key.

Dimensionally incorrect answers: If an answer isn’t dimensionally correct give 0
points.

Incorrect constants: If an answer has the wrong numerical constants but the correct
functional form, give half marks.

Problem 1: Warm-Up

a. For a general body with mass m, radius r, and moment of inertia I, the energy of
the rolling body is:

E = Iω2/2 +mv2/2 +mgh (1 point)

The bodies are rolling with out slipping, thus v = ωr. Let α be the angle of the
incline → h = ysinα, where y is the vertical position of the body with respect to
the bottom of the incline. So:

E =
1

2
(I +mr2ω2) +mgysinα =

1

2
(I +mr2)(v2/r2) +mgysinα

Energy is conserved, so
dE

dt
= 0. Computing the derivative and recalling that

dy

dt
= v

and
dv

dt
= a we get:

( I
r2

+m
)
va−mgv sinα = 0

a =
mgsinα

I/r2 +m
→ a =

gsinα

I/mr2 + 1
(3 points)

The first body to arrive at the bottom is the one with the greatest acceleration,
which is equivalent to the body with the minimum I/mr2.
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For the hollow pipe:
I

mr2
=
ma2

ma2
= 1

For the solid sphere:
I

mr2
=

2

5
m(2a)2

m(2a)2
=

2

5

For the solid pipe:
I

mr2
=

1

2
(2m)a2

(2m)a2
=

1

2

So the solid sphere will arrive first. (1 point)

Note: this problem can also be solved using torques.

b. Let the point have mass m. This problem is easily solved using the principle of
superposition. Since the gravitational force is linear in mass, the point where the
mass was removed can be thought of holding two masses - the initial mass m, plus
a point mass of mass −m.

The field of the 2018 evenly space point masses is 0 at P. So the only component
comes from the negative mass we introduced.

Suppose the negative mass is located at point Q; then
−→
QP be the vector connecting

the negative mass to point P. Therefore:

~Γ(p) =
Gm

R2

−→
QP

R
(0.5 points)

|~Γ(p)| =
Gm

R2
(0.5 points)

Four points are awarded for the explanation.

c. The points of equilibrium are given by
dU

dx
= 0. Therefore:

ex(sinx+ cosx) = 0→ sinx = − cosx

x1 =
3π

4
, x2 =

7π

4
(1 point)

An equilibrium is stable if U is at a local minimum (
d2U

dx2
> 0) and unstable if U is

at a local maximum (
d2U

dx2
< 0). Computing

d2U

dx2
= 2ex cosx yields:

cos (7π/4) =
√

2/2→ 7π/4 is a stable equilibrium (1 point)

Since x ∈ [0, 2π), we also need to check the point 0 to see if it is a point of
local minimum or maximum of U . (1 point for identifying x = 0 as a point of
equilibrium.)

d2U

dx2
(0) = 2e0 cos 0 = 2 > 0

Therefore, x = 0 is a point of local minimum, and the equilibrium is stable. (1
point)
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Problem 2: Bead on Rotating Rod

+q

φ

N

mg

Fc

a. The equation of motion parallel and perpendicular to the rod are respectively

mq̈ = Fc sinφ−mg cosφ (1)

0 = FN −mg sinφ. (2)

where FN is the normal force and Fc is the centripetal force. Now

Fc = mω2R0 = mω2q0 sinφ. (3)

By (1), since we require equilibrium at ω = ωc,

mq̈ = m(ω2q0 sinφ− g cosφ) = 0. (4)

Thus
ω2
c =

g

q0 tanφ
. (5)

Two points for using Newton’s laws correctly. One point for correctly identifying
the centripetal (or centrifugal) force. One point for stating equilibrium condition.
One point for correct answer.

b. Fix ω > ωc. Then from (1),

q̈ − (ω2 sinφ)q + g cosφ = 0. (6)

All (the whole three points) or nothing.

c. Plugging in the solution

q(t) = A1e
Ωt + A2e

−Ωt +B (7)

we have
Ω = ω

√
sinφ, B =

g

ω2 tanφ
. (8)

As the bead starts from rest q̇(0) = 0 implies

A1 = A2 = A. (9)

As q(0) = q0 = A1 + A2 + g/(ω2 tanφ),

A =
1

2

[
q0 −

g

ω2 tanφ

]
. (10)
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Compactly
q(t) = 2A cosh(Ωt) +B.

One point awarded for each correct determination of unknown constant. Two points
for determining Ω. The use of hyperbolic functions is not necessary, and the test-
taker will not be penalized for not using them.

d. The bead flies off when

q(tf ) = L = 2A cosh(Ωtf ) +B = A(eΩtf + e−Ωtf ) +B (11)

or

tf = cosh−1
(L−B

2A

)
. (12)

One point for writing down either of the above equations (or equivalent).

e. When the bead flies off, it will be launched at an angle φ with respect to the vertical
with a component of velocity parallel to the rod

v = q̇(tf ) = 2AΩ sinh(Ωtf ) = AΩ(eΩtf − e−Ωtf ). (13)

But because the rod is spinning, the bead will also be launched with a tangential
component of velocity

ωR = ωL sinφ. (14)

Two points for each component of velocity above correctly identified.

f. Let v = q̇(tf ) (see (13)). Then we want to solve for when the bead hits the ground:

L cosφ+ (v cosφ)t− gt2

2
= 0. (15)

The quadratic formula gives

T =
1

g
(−v cosφ+

√
v2 cosφ+ 2gL cosφ). (16)

Two points for each equation.

g. In one component, the bead will travel a distance of (v sinφ)T away from the launch
point. The launch point itself is L sinφ away from the center, so in one component,
the bead will travel

(v sinφ)T + L sinφ.

However, because the rod is spinning, the bead will also have a tangential compo-
nent of velocity ωR (see part e)). Thus, the bead will be deflected a perpendicular
distance of

ωRT.

In total, (by the Pythagorean theorem) the bead will land at a distance of√
(ωRT )2 + [(v sinφ)T + L sinφ]2 (17)

from the center. All (the full three points) or nothing.

Problem and solution written by Alex Chen.
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Problem 3: Disk Oscillations

Part 1

a. ∫
ρ(r)dA =

∫ R

0

ρ(r)2πrdr =

∫ R

0

kr(2πr)dr

= 2πk

∫
0Rr2dr =

2π

3
kR3 (3 points)

b. By definition,

I =

∫
r2dm =

∫ R

0

ρ(r)(2πr)r2dr = 2πk

∫ R

0

r4dr

=
2π

5
kR5 =

2π

3
kR3 × 3

5
R2 =

3

5
MR2 (5 points)

c. By symmetry, the center of mass will be the geometrical center of the disk. The
energy of oscillations is:

E = Iθ̇2/2 +mv2/2 +Mgh

Plugging in v = Rθ̇ and h = R(1− cos θ) yields:

E =
1

2
(I +MR2)θ̇2 +MgR(1− cos θ) (1 point)

Note: the first term can also be found by applying the Parallel Axis Theorem.

Energy is conserved→ dE

dt
= 0 (1 point)

Taking the derivative and simplifying yields:

(I +MR2)θ̇θ̈ +MgR sin θθ̇ = 0

θ̈ = − MgR

I +MR2
sin θ (1 point)

Since sin θ ≈ θ for small angles, we can rewrite this second-order differential equa-
tion in a recognizable form:

θ̈ = − MgR

I +MR2
θ = −ω2θ

Therefore the frequency of oscillations is:

ω =

√
MgR

I +MR2
=

√√√√ MgR
8

5
MR2

=

√
5g

8R
(2 points)

Note: this problem can also be solved using torques.
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Part 2

a. Upper half:

M

2
=

∫ R

0

ρ1πrdr = ρ1
πR2

2
→ ρ1 =

M

πR2

Lower half:

M

2
=

∫ R

0

ρ2πrdr = k

∫ R

0

πr2dr = πk
R3

3
→ k =

3M

2πR3

Now we compute the moments of inertia of the respective halves with respect to
the center C:

Iupper =

∫ R

0

ρ1πr(r
2)dr = ρ1π

∫ R

0

r3dr

= ρ1π
R4

4
=

M

πR2
× πR4

4
=
MR2

4
(1 point)

Ilower =

∫ R

0

ρ2πr(r
2)dr = kπ

∫ R

0

r4dr

= kπ
R5

5
=

3M

2πR3
× πR5

5
=

3

10
MR2 (2 points)

To account for the circular hole, we can superimpose a disk of “negative mass”
−M/4. Invoking the Parallel Axis Theorem, this yields:

Ihole = −1

2

M

4

(R
2

)2 − M

4

(R
2

)2
= − 3

32
MR2

Summing these moments of inertia, we find:

I = Iupper + Ilower + Ihole =
73

160
MR2 (3 points)

b. Please see the attached PDF for a step-by-step solution to this problem.
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Problem 4: Soap Bubble

Equilibrium of forces at detachment: Fweight + Fair flow = Fsurface tension

Fweight = (mass of soap)g = σg[4πR2 − π(r2 + h2)] (2 points)

Fair flow = (number of molecules going into the bubble per unit time)

× change of momentum/unit time

= ρπr2v∆t
∆v

∆t
= ρπr2v∆v = πρr2v2 (7 points)

Fsurface tension =
∆E

∆z
=

∆((γA)

∆z

=
(2)(2πr)γ∆z

∆z
= 4πrγ (8 points)

The factor of 2 comes from the fact that there are 2 soap films around the bubble. The
equation becomes:

4πσgR2 − πσgr2 − πσgh2 + πρr2v2 = 4πrγ

4σgR2 − σg(R−
√
R2 + r2)2 − σgr2 + ρr2v2 = 4rγ

σg(4R2 −R2 −R2 + r2 + 2R
√
R2 − r2) = 4rγ + σgr2 − ρr2v2 (2 points)

The volume of the bubble after detachment equals the volume of the ”sphere with
cap removed” with radius R found above. That is:

4

3
πR3

f =
4

3
πR3 − 1

3
πh2(3R− h) (2 points)

Note: the above two equations do not have to be explicitly solved for full credit.
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