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2013 WMI Mini Lecture 

Mathematical principles within famous painting 

DAHEE CHUNG, CSIA (1997dahee@gmail.com) 

August 15, 2013 

 

1.  Introduction 
 

Welcome! It’s my pleasure to give you a lecture in this World Mathematics 

Invitational! The goal of my lecture is to appreciate masterpieces and understand 

mathematical principles within each of pictures. We are going to skim masterpieces of 

various painters and catch mathematical tools and secrets from the pictures. After the 

brief explanation about famous paintings, we are going to understand mathematical 

meaning within the masterpiece and solve related problems. Aren’t you interested? 

Let’s start! 

 

2. What is the golden ratio found in the body of ‘The birth of 

Venus’ and ‘Hector and Andromache’? 
 

The golden ratio (symbol is the Greek letter phi) is a special number approximately 

equal to 1.618. It appears many times in geometry, art, architecture and other areas. If 

you divide a line into two parts so that: the longer part divided by the smaller part is 

also equal to the whole length divided by the longer part. Then you will have the 

golden ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

Related concepts 

♠ How many golden rectangles are in ‘Broadway Boogie-

Woogie’? 

This rectangle has been made using the Golden Ratio, 

Looks like a typical frame for a painting, doesn't it? 
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Some artists and architects believe the Golden Ratio makes the most pleasing and 

beautiful shape. 

 

Here is one way to draw a rectangle with the 

Golden Ratio: 

• Draw a square (of size "1") 

• Place a dot half way along one side 

• Draw a line from that point to an opposite 

corner (it will be 25  in length) 

• Turn that line so that it runs along the 

square's side 

Then you can extend the square to be a rectangle 

with the Golden Ratio. 

 

♠A special relationship between the Golden Ratio and the Fibonacci Sequence 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... The next number is found by adding up the two 

numbers before it. And here is a surprise: if you take any two successive (one after the 

other) Fibonacci Numbers, their ratio is very close to the Golden Ratio. 

 

In fact, the bigger the pair of Fibonacci Numbers, the closer the approximation. Let us 

try a few: 

A B   B/A 

2 3   1.5 

3 5   1.666666666... 

5 8   1.6 

8 13   1.625 

... ...   ... 

144 233   1.618055556... 

233 377   1.618025751... 

... ...   ... 



3  

3. Can we draw the spirals in ‘The shell’ and ‘Tower of Babel’ 

with mathematical methods?  

 

In mathematics, a spiral is a curve which emanates from a central point, getting 

progressively farther away as it revolves around the point. 

 

Two major definitions of "spiral" in a respected American dictionary are  

 

a. A curve on a plane that winds around a fixed center point at a continuously 

increasing or decreasing distance from the point. 

b. A three-dimensional curve that turns around an axis at a constant or continuously 

varying distance while moving parallel to the axis; a helix. 

We can build a squarish sort of nautilus by starting with a square of size 1 and 

successively building on new rooms whose sizes correspond to the Fibonacci 

sequence:  

Running through the centers of the squares in 

order with a smooth curve we obtain the 

nautilus spiral , the sunflower spiral. This is a 

special spiral, a self-similar curve which keeps 

its shape at all scales (if you imagine it spiraling 

out forever). 

 

 

 

It is called equiangular because a radial line from the center makes always the same 

angle to the curve. This curve was known to Archimedes of ancient Greece, the 

greatest geometer of ancient times, and maybe of all time. 
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4. What is the secret of magic square hidden in ‘Melencolia I’ and 

‘Ssireum’?  
 

A magic square is a square array of numbers consisting of the distinct positive 

integers 1, 2, ..., 
2

n  arranged such that the sum of the  numbers in any horizontal, 

vertical, or main diagonal line is always the same number, known as magic constant. 

 
The 4 × 4 magic square, with the two middle cells of 

the bottom row gives the date of the engraving: 1514. 

This 4x4 magic square, as well as having traditional 

magic square rules, its four quadrants, corners and 

centers equal the same number, 34, which happens to 

belong to the Fibonacci sequence. His age in 1514 

was 43, reverse of 34. 
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5. Further Discussions 
 

-What is the probability that swindler will win in ‘The cheat with ace of diamond’? 

-What is the hidden meaning of pentagon and star in ‘The Descent from the Cross’?  

-Where is the center of gravity in 'Woman holding a balance'? 

-What are secrets of 'The school of Athens' and 'Brena Madonna' which are drawn 

with the utilization of perspective? 

-What symbolize the cabbalistic number and sign in 'Last Supper'? 

- What is volume relationship between the figures in ‘Senecio’ 

-Why the impossible triangle in 'Waterfall' seems possible? 

-What is the principle of melodious note in 'Spanish singer' and 'Three musicians’? 

-'The red son gnaws at the spider' and dancing pi?  

-What is the balance between circles within the 'Several Circles'?  

-What is the meaning of clock in ‘The Persistence of Memory’? 

-Why the legs of easel in ‘The Human Condition’ and ‘atelier’ are three? 

 

 

If you have any questions, please contact me by 1997dahee@gmail.com. 
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2013 WMI Mini Lecture 

Living Amid Probabilities 

Joon-hyuk Chang, KMLA(edwardjh@naver.com) 

Minseok Kim, KMLA (aosdbqhdl@naver.com) 

August 15, 2013  
1.  Introduction 
 

Greetings to all. It is with the utmost pleasure that we address you. Today, we will 

deliver a lecture on probabilities in our everyday lives. We have one small hope. We 

wish that this lecture will be memorable to most, if not all, of you, a unique lecture 

that many of you find striking. We will address topics such as lotteries, dice, and card 

games one at a time and undertake an examination at the probabilities involved in 

each of these issues. Sit back, relax, and enjoy our lecture. Let’s begin.  
2.  Lotteries – Part 1  
How much Lotto do you think you have to purchase before you win the first prize? 

Can you try to make a conjecture?  

In case some of you are not familiar with how lotteries work, I would like to explain. 

When you buy a lottery, there are six numbers imprinted on it. The six winning 

numbers, which are announced periodically, are chosen randomly one at a time. How 

many same numbers you have determines the prize you will receive. If all the winning 

numbers are imprinted on the lottery you bought, congratulations: you have won the 

lottery. 
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Now, I would like to introduce you to my self-made lottery program. 

Let’s define a trial as the process of buying a lottery and checking the winning 

numbers. When I enter an integer between 1 and 6, inclusive, it runs a random 

simulation of consuming lotteries and counts the number of trials before there are as 

many matches between the winning numbers and the purchased lottery’s numbers as 

the number I put as input. For example, if I enter 1, it shows me how many trials of 

buying lotteries I would have to undergo until one out of the six numbers match. The 

same goes with 2, 3, 4, 5, and 6.  

How much time do you think will be needed for the program to indicate that I won 

first prize in the lottery? Let’s begin running the program now with 6 as the input and 

continue discussing lottery more in depth near the end of the lecture. 

 

3. Dice 
 

The six-sided dice has many properties that make it intimate with concepts of 

probability. Each of the six sides has distinct whole numbers from one to six inscribed 

on it. The theoretical probability of attaining each number when throwing a regular 

dice is 61 . 

*Theoretical Probability: the probability we would expect to observe 

*Experimental (Empirical) Probability: the probability actually observed during 

testing processes 

 

Understanding the distinction between theoretical probability and experimental 

probability is important. Throwing a large number 

of dice or throwing one dice multiple times 

illustrates the difference clearly. If, for instance, 12 

dice are thrown, we would expect to get each of the 

six numbers two times. That is based upon 

theoretical probability. However, when we actually 

throw 12 dice, we can easily see that it is actually 

difficult to get each number exactly two times. Most 

likely, we are going to get some numbers more than 

others. The uneven distribution of the attained 

numbers can be easily noticed if we create six 

stacks of dice with each stack containing dice with 

the same number. After throwing the dice, if we 

calculate the probability that each number was 

attained, we will end up with the experimental 

probability. 

An interesting probability I would like to point out is that the more dice rolled, the 

closer the experimental probability will be to the theoretical probability. For example, 

when we roll 36 dice and stack them into groups of same numbers again, we can 

notice that the lines are much more even then before. We receive a result much closer 
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to what we can expect before actually throwing the dice. 

 

4. Card Games 
 

Cards are also items closely related to concepts of 

probability. 

A typical deck of cards contain 52 cards, not 

counting the usually included two Jokers. In a deck, 

there are four suits – clover, spade, diamond, and 

heart – and thirteen ranks – numbers one through 

ten, Jack, Queen, and King. All of the cards are 

distinct, which means that although two different 

cards from the same deck may have the same suit 

or the same rank, they may not have the same suit 

and the same rank simultaneously. 

Although all card games essentially and 

inadvertently involve probability to some degree, 

the two to discuss in this lecture are Poker and 

Blackjack. 

1. Poker 

 

Poker is a common gambling 

game involving betting. The 

person who can create the best 

combination of cards using his 

own cards and the cards on the 

table at the end of the game is 

declared the winner of a round 

of Poker. 

When the game begins, the dealer gives two cards to each of the players. The cards 

that a player holds are called his ‘hand.’ Afterwards, three cards on the top of the deck 

are flipped so that every player can see them. The dealer flips another card, and the 

players take turns betting. This process is repeated until there is a certain amount of 

cards on the table. The players who had not folded reveal their hands, and the winner 

takes the pot. 

The aspect of poker that makes it especially intimate with probability is the ranking 

order of the hands. The hierarchy is arranged in the order of the least likely outcome 

to the outcome with the highest probability. 

The aspect of poker that makes it especially intimate with probability is the ranking 

order of the hands. 
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Hand Frequency Probability Odds 

Royal Flush 4 0.000154% 649,739:1 

Straight Flush  36 0.00139% 72,192.33:1 

Four of a Kind 624 0.0240% 4,165:1 

Full House 3,744 0.144% 694.17:1 

Flush 5,108 0.197% 508.80:1 

Straight 10,200 0.392% 255.8:1 

Three of a Kind 54,912 2.11% 47.33:1 

Two Pair 123,552 4.75% 21.04:1 

One Pair 1,098,240 42.3% 2.37:1 

High Card 1,302,540 50.1% 1.96:1 

 

2. Blackjack 

 

Blackjack is another well-

known card game with an 

exceptional proximity to 

probability concepts. 

The goal of Blackjack is to 

reach near as possible to 21. 

Each of the cards has an 

assigned value. Cards with 

ranks two to ten each has a 

value same as its rank. Jack, 

Queen, and King have values 

of ten. Ace can represent a 

value of either one or eleven, 

depending on how the player 

wants to use it.  

The dealer deals each player two cards – one face-up, one face-down. Each player 

take turns deciding whether to receive more cards (also known as ‘hit’) or stop. The 

moment a player’s hand exceeds 21, he is ‘bust,’ meaning that he is automatically out 

of the game. When all players have stopped, they reveal their hands, and the winner is 

the person whose hand’s value is the closest to 21. 

Blackjack is a game where the odds of any particular outcome can be calculated 

extremely accurately. By looking at the face-up cards of other players and your own 

cards, you can guess what cards are remaining in the deck. Thus, you can determine 

the approximate probability that you will not be bust when you hit. If there is a fair 

chance that you will get closer to 21 without exceeding it, it would be rational to hit. 

One must remember that there is a greater probability of being dealt a card of value 10 

than cards of any other values.  

It is interesting to note that the probability of being dealt a 21 – a Blackjack – is 

4.83%. In a deck of 52 cards, there are four Aces and 16 cards with values of ten. 

Since you need one Ace and one card of value ten to get 21, there are 6416*4 =  
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possibilities. The total number of outcomes can be calculated as corresponds to 

1326252 =C . Thus, the probability of being dealt a Blackjack is 

%83.40483.01326/64 == . This particular percentage means that you will be dealt a 

Blackjack in about once every 21 rounds.  

 

Lottery-Part 2 
 

The probabilities of having a particular number of matches are as below. 

 

Number of Matches Probability Calculations 

6 81450601  








=

1*2*3*4*5*6

40*41*42*43*44*45
1

C

1

645

 

5 871/34807.94  

645

13956

C

C*C
 

4 1/732.7989  

645

23946

C

C*C
 

 

Thus, in order to win the first prize in the lottery, you would have to beat the one-in-

8145060 probability.  

You can notice that the Java lottery program is still running. At the rate it is operating, 

it will take about one day and a half before it wins the lottery. 

 

This is the end of the lecture. Thank you. 
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2013 WMI Mini Lecture 

Inequalities 
In Ha Lee, HAFS (inha812@gmail.com) 

August 15, 2013 

 

1. Introduction 
 

Hello and welcome to the 2013 World Mathematics Invitational! I am In Ha Lee, and 

I will give a brief lecture on math inside economics. I have chosen this topic because I 

don’t think you guys know much about this topic.  

Before all this, why is math inside economics a good topic? Economics and 

mathematics love each other. No, let me correct it. Economics love math. Pretty much 

everything about economics is math. In the next 15 minutes or so, I will show you 

why pretty much all of economy has something to do with math. 
 

2. Elasticity 
 

First, let’s look into something called elasticity. In economics, elasticity is the 

measurement of how changing one economic variable affects others.  

For example: 

 

"If I lower the price of my product, how much more will I sell?" 

"If I raise the price, how much less will I sell?" 

"If we learn that a resource is becoming scarce, will people scramble to acquire it?" 

 

Generally, an elastic variable is one which responds a lot to small changes in other 

parameters. Similarly, an inelastic variable describes one which does not change much 

in response to changes in other parameters. 

In more technical terms, it is the ratio of the percentage change in one variable to the 

percentage change in another variable. It is a tool for measuring the responsiveness of 

a function to changes in parameters in a unit less way.  

The definition of elasticity is based on the mathematical notion of point elasticity. In 

general, the "x-elasticity of y", also called the "elasticity of y with respect to x", is: 

 

%∆∆

%∆∆

y

x

x

y

lnx

lny
E xy, ≈×

∂

∂
=

∂

∂
=  

 

The approximation becomes exact in the limit as the changes become infinitesimal in 

size. The absolute value operator is for simplicity – generally, depending on context, 

the sign of the elasticity is understood as being always positive or always negative. 

However, sometimes the elasticity is defined without the absolute value operator, 
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when the sign may be either positive or negative or may change signs. A context 

where this use of a signed elasticity is necessary for clarity is the cross-price elasticity 

of demand — the responsiveness of the demand for one product to changes in the 

price of another product; since the products may be either substitutes or complements, 

this elasticity could be positive or negative. 
 

3. Game Theory 
 

Next is about game theory. As some of you may know, game theory is related to real 

life more than other theories do. Before we go on, what is game theory? 

Game theory is a field in applied mathematics basically focusing its studies in 

strategic decision making. 

Some people call this the interactive decision theory, because it mainly is about 

making your own decision based on other people’s already-made decisions. Game 

theory is used in various fields of study such as economics, political science, 

psychology, and even biology, so learning game theory enables you to access other 

fields of study. 

Up to this point, you might think that there isn’t much math in this field. I thought so 

too when I first met game theory. I’ll show you the fundamentals of this theory and 

you’ll understand why this is math. 
 

 

4. Nash Equilibrium 
 

Everything starts with the Nash Equilibrium. The Nash Equilibrium is a solution 

concept on a non-cooperative game involving two or more players. Non-cooperative 

literally means, the players make their decisions independently. In a Nash Equilibrium 

state, each player is assumed to know the equilibrium strategies of the other players, 

and no player has anything to gain by changing only their own strategy unilaterally. 

You might not understand what this means, since they are all words. 
 

 

B 

Confess ZIP 

A 
Confess (8, 8) (1, 10) 

ZIP (10, 1) (4, 4) 

 

This is an example of the Nash equilibrium. You guys all heard of the prisoner’s 

dilemma, right? That’s also Nash Equilibrium. Say A and B represents prisoners in 

jail, and they have two choices: they can either confess or keep their mouth shut. The 

numbers above are the amount of years sentenced to the following person, A and B 

respectively. Now let’s compare each outcome. Let’s compare them side by side, and 

up and down. You can see that for both of them, confessing gives better results than 
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keeping their mouth shut. Therefore, as rational decision makers, they inevitably start 

talking even though the best option for both of them is to keep their mouth shut. 

This tells us, that the best choice may not always lead to the best outcome. 

 

5. Conclusion 
 

Now, why is this an important lecture? Mathematics for mathematics itself is cool 

indeed. However, I think math comes to importance when it solves real life problems. 

Mathematics is the basics of economics, engineering, various fields of natural science, 

psychology, statistics, etc. Studying mathematics will give each and every one of you 

an advantage in these fields when you grow up. Now, you may all be planning to 

major in math, but I present you with this lecture, pointing out that many other things 

can be solved with math, and they are just as fun as math is. I want all of you to think 

about this matter and hope that I gave you guys some help in figuring out the 

essentials of economy through math. 
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2013 WMI Mini Lecture 

Probability Soccer 
Sang Jun Han, CSIA (hansang0282@gmail.com) 

August 15
th

, 2013  
1. Introduction  
Hello ladies and gentlemen, I wish you are having a great time!  

The lecture that I would like to present to you today is of very, very simple everyday 

math, but math that so much people even bet their money on. You can’t see it. As we 

couldn’t know about the microorganisms until we invented the microscope, this math 

is secretly dissolved in every aspect of our life. If you get a keen eye looking into 

them, you would be able to see math lingering around just like the microbes. Today, I 

am here to be that eye for you and look into the math of soccer, specifically the most 

heart-beating part of it.  
2. Soccer: The Penalty Shootout  
Soccer is an all-around sport, which you can play if you only have any type of a ball 

that is kickable. You score if you put the ball into the other team’s net. You win if you 

score more than the other team. To score, you can do whatever you want except using 

arms and hands and keeping the offside rules. I can daresay that soccer is one of the 

ball games with the simplest rules. 

Even though the time in which you get pressure and tension could be many, such as 

when the striker is about to score the game-ending goal, or when Cristiano Ronaldo is 

about to take a shot of a free kick, I would like to tell you about one moment in which 

you would get the most tension: the penalty shootout. It is the Ball version of the 

Russian roulette. You take a shot at the goalie just like the situation in which you get 

the penalty award. Then, the other shoots at your team. The fact is, when you fail it, 

you fail the whole team. The saver becomes so glad, but the kicker feels as if the 

world is falling upon them. It is simply hard to explain the extreme contrast between 

the two players. 

What we would do together for today is digging up the behind story of penalty 

shootouts, and finding out whether as a mathematician can predict the result of it.  
3. Keeper’s Dilemma  
Starting with, we got to realize about how the Penalty Shootout is done. The fight 

between the keeper and the kicker is only 11 meters apart. The kicker has a freedom to 

choose where to start his running, but the keeper must stay within the goal line in 
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between the goal posts until the kicker touches the ball. The kicker must touch the ball 

without stopping, and after he touches the ball in whatever means, he cannot touch it 

again. Evaluating from these rules, there is much more restriction to the keeper than 

the kicker. 

So when the best kickers, Cristiano Ronaldo, Lionel Messi, Wayne Rooney, kicks 

their best, the ball in average reaches up to 80 kilometers per hour. Considering that 

the distance between the keeper and the kicker is 11 meters, we can do a simple 

calculation to find out that the ball reaches the keeper in no less than 0.5 seconds. 

 

The speed of the ball: sm22.223600sechour1kmm1000hkm80 =××  

The time the ball takes to reach the keeper: 0.495secsecm22.2211m =÷  

 

But the experiments with the best savers, say Iker Casillas, Gianluigi Buffon, Petr 

Cech, announces the fact that the time it took for the keepers to react after realizing 

where the ball would go was at best 0.75 seconds on the best conditions. Definitely no 

keepers can save the penalty if they react after they realize where the kicker shot the 

ball. How do we then see keepers blocking the penalty? Yes, as you might have 

figured, they guess. They jump right away when the ball is about to be kicked. Then 

they wish for the goddess of victory to take their hands up. People who watch soccer 

sometimes refer to this situation in which there is absolutely no way for the keeper to 

certainly stop the ball as, “Keeper’s Dilemma”.  
4. Simple Possibility  
We have found out that for the keeper, it is more of a guessing game than a playing 

game. Then we might ask about a simple possibility for the keeper to save the ball by 

luckily having the kicker kick at the place the keeper jumped. Do not forget that we 

are trying to get the simplest possibility possible, which, in most of the time, gives us 

the most correct answer. 

Thinking about the possibility of stopping the ball, we can measure the total area of 

the goal post to the total area of the goalie. A normal goal post has a length of 24 feet 

and width of 8 feet. A simple multiplication gives us, 192824 =× feet squared. This 

equals to 17.8608 square meters. Now, a normal keeper in the soccer league is about 

1.9 meters tall, and his shoulder width is about 0.7 meters. Again, we will do a simple 

multiplication to get 1.330.71.9 =×  meters squared. So, the percentage of the area of 

the goal post which is covered by the goalie is, 

 

t7.44percen
17.8608m

1.33m

Post Goal  theof Area

Keep  theof Area
2

2

==  

 

In other words, a keeper has a fat chance of 7.5 percent to be able to stop the ball. 

Considering the fact that it is only this big of a percent that the keeper hopes for and 

throws his comparatively teeny body even arouses some sympathy for the keeper. 
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5. It is Not THAT Simple  
Don’t worry. The game of soccer isn’t that unfair. The fact is, not a lot of kickers have 

enough guts to actually kick into the middle. Yes there are literally countable people, 

such as Antonin Panenka a Czech footballer who surprised the world by ‘floating’ the 

ball so slowly and directly into the middle of the goalpost. The kick in which you float 

the ball right into the middle of the goalpost from then was called as the Panenka Kick. 

Most recently, Andrea Pirlo did it on Euro 2012, and I couldn’t find anymore. Yes, 

unless the kicker makes a mistake during his kick, the statistics say that it is very, very 

unlikely for the kicker to kick the ball in the middle. 

Aha, a bit of a relief. Then how shall we now divide the goalpost after knowing this 

fact? Here, we need to specifically define the area in which the goalie can defend just 

standing at his starting point. Leonardo da Vinci’s drawing of a man gives us the fact 

that a man’s arm length equals to that man’s height. Also, the kicker wouldn’t 

probably wonder whether to kick the upper middle or the down middle. So, we can 

delete a rectangular area of the goal for the goalie. The area in which the keeper can 

defend while simply standing can be calculated as, 

 

4.632062.43841.9Height) sPost' Goal (TheLength) Arm (The =×=× 2m  

 

This would definitely reduce the area in which the keeper should take care of by the 

amount of about a quarter. Now, if we consider the area that the keeper can save if ball 

comes as circular, we can calculate its size by defining the arm’s length as the 

diameter. Then, we can get the value of the area of the circular part which is, 

2

22

2.83m
2

1.9
3.14

2

d
π ≈








×=







  
Here, we would give a difference in thought. We will now say that the keeper would, 

and is also done by the keepers normally, decide to jump in either four corners of the 

goalpost. In other words, the keeper would jump to the left up, left down, right up, and 

right down. For this, we can simply say that the keeper would be able to jump to each 

of the corners in 25 percent chance each. Now, we should get the area of each of the 

corners. The area of each of the corners can be easily derived by dividing the 

remaining area of the goal by 4. The result is, ( ) 23.30696m44.6329617.8608 =÷− . 

The chance of the keeper saving is done by the given thought process. 

 
save ldkeeper wou  thechance (Thecorner)correct   thechoose ldkeeper wou  thechance (The ×

×corner)correct   thechose hewhen nt21.39perce1003.306962.8341100 =××=   
A notable fact from this thought process is that if the keeper chooses the correct space 

to jump for, then the percentage of him blocking that area is, 

nt85.57perce100)3.306962.83( =×  
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6. Conclusion  
Yes, it is true that there are many ways to approach to this question. I would say that 

no approach to this question is wrong. However different the chance may come out, it 

still isn’t reassuring to the keeper because it would never go over 50% unless you 

decide to say that the keeper would block it or not, and give 50% chance. 

To be more exact about this situation, the fact is that all keepers are aware of the style 

of the kicker. Before standing before the ball, they are always informed about how the 

kickers mostly kick when they are in a burden to score. Even more, the penalty 

shootout is done when the athletes have already run 120 minutes. Any type of a 

tendency to kick is most likely to show up. The keeper, who is mostly the person with 

the most stamina left, can catch that glitch of moment. This is why there seems to be 

so much super saves that just cannot be explained by the percentage that we would get 

mathematically.  
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2013 WMI Mini Lecture 

Relationship between Music and Mathematics 
Da Yeon Lee, CSIA (leedygood7@gmail.com) 

August 15
th

, 2013 

 

1. Introduction 

 

Good afternoon everyone! This is Da Yeon Lee from CSIA. Today I am very honored 

to have an opportunity to talk in front of all of you. The topic for today’s talk would 

be, as you guys all know already, the mathematics of the music. When I was young, I 

learned how to play clarinet. You know, when you do music, many people say you 

have to “feel the music by heart” and such things. Music is generally taken as 

something very emotional. And the image of mathematics was rather the very opposite 

of it – rational and very logical. I thought they were two separate things. But as I grew 

older, I was pretty astonished by the fact that mathematics was also working as the 

base of these musical works. Now I’m going to talk about some mathematical factors 

in the music, and I hope all of you enjoy this talk.  
 

2. Pythagoras 

 

Surprisingly, Pythagoras was among the first ones to construct a theory related to 

music. (especially the pitch of the sound) According to the record by Boethius, a 

philosopher from 6
th

 century, Pythagoras was walking by the blacksmith’s workshop 

when he heard the perfectly harmonious sounds of the hammering sounds. Later he 

found out that the ratio among the weight of the hammers was 6:8:9:12, integer ratio. 

Especially when the weights were 2:1, they made sounds that had a difference of an 

octave. When the weight ratio was 3:2, they made perfect 5
th

 (diapente) sounds; when 

the weight ratio was 4:3, they made perfect 4
th

 (diatessaron) sounds.  

This result is quite hard to believe, especially since many of the researchers had 

already tried making sounds with the hammer of specific ratio, but did not make such 

sounds. Thus this tale may be legendary – only a myth – but still this is significant in 

that Pythagoras related numbers and ratios with music. And these ratios can actually 

be applied in case of the strings. While the ratios did not work out in the case of 

weights of the anvils, if we apply those ratios in the lengths of the strings, then we can 

find out that the harmonies that Pythagoras talked of works.  

When the length of the string is long, it makes lower sound; when the length is short, 

it makes higher sound. And amazingly, the ratios of the length introduced above (2:1, 

3:2, 4:3) show the same relationship with harmonies of the sound.  
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3. Harmonic Sequences in an Octave 

 

One octave is consisted of 12 different sounds. And among the designation of the 

tones, arithmetic and harmonic sequences are used. 

There are two ways to calculate the frequency of the semitones: we may use integer 

ratios as presented above by Pythagoras, or use the temperament. Most commonly 

used system of the tunes is “equal temperament”: as expressed in keyboard 

instruments, one octave is made up of 12 different tones, divided by semitones. The 

semitones show that respective frequency ratio is constant. According to this, each 

semitone must have the frequency ratio of 1.0595212 ≈ .  
 

 Integer ratio temperament 

Perfect 4
th

 3333.1
3

4
≈  ( ) 3348.1212

5

≈  

Perfect 5th 5.1
2

3
≈  ( ) 4983.1212

7

≈  

 

By the above example, which represents the chords in both integer ratio and 

temperament, we can see that both systems show similar results in calculating the 

difference. Such method of calculation used in temperament shows the usage of 

harmonic sequence in music.  
 

4. Mersenne’s Laws 

 

Marin Mersenne was a French theologian, philosopher, mathematician and music 

theorist in 17
th

 century. He is often referred to as the “father of acoustics.” He is well 

known for his works on relating music and sound with mathematical concepts, now 

known as Mersenne’s Laws.  

L’ Harmonie Universelle (1637) contains the idea of Mersenne’s Laws, which describe 

the frequency of oscillation of a stretched string. The main ideas of the Mersenne’s 

Laws are: 

1. The frequency is inversely proportional to the length of the string (this is 

usually credited to Pythagoras himself) 

2. The frequency is proportional to the square root of the stretching force 

3. The frequency is inversely proportional to the square root of the mass per unit 

length. 

Thus the formula for the lowest frequency is  

µ

F

L
f

2

1
=  

where is the frequency,  is the length,  is the force and  is the mass per unit 
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length. 

I am introducing this formula just to show the relationship of each factor to the 

frequency of the sound, so you don’t really have to memorize or have detailed 

knowledge about the formula right now. (If you are interested, you can certainly do 

some research and study on acoustics!) When we apply such relationship (inversely 

proportional / proportional factors) into the string instruments, let’s say, for example, a 

guitar, then what can we do to make a sound with higher frequency? First, you can 

shorten the length of the vibrating string by using a capo for guitar. Second, you can 

increase the tension of the string by pulling it with stronger force. And lastly, you can 

use thinner, lighter string to make higher sounds. 

 

5. Conclusion 

 

So now, we have taken a look at how mathematics is deeply affecting the music as 

well. Mathematics does really seem to be around us, doesn’t it? It was a short talk and 

I may still have insufficient knowledge on the subject. Still, it was nice to have an 

opportunity to talk to you about my interests and how I found such subject fascinating. 

Hope you all enjoyed as well, and thank you for listening! 
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1 Introduction
Welcome to 2013 World Mathematics Invitational!
In this mini-lecture, I would like to present how to study the size of infinite sets. What 
does it mean for an infinite set to have a size? How is it related to the usual notion of 
the size of finite sets? How do we compare the size of infinite sets? How big are the 
sizes of well-known infinite sets such as the natural numbers(N), the integers(Z), the 
rationals(Q), the reals(R)? There is a huge theory called the set theory to systematically 
study these topics, but in this lecture I will focus more on the interesting facts that will 
surprise you rather than rigorously going through all the details of set theory.
Let us start with the discussion of finite sets, which has an intuitive notion of size 
which we are already familiar with.

2 Sizes of Finite Sets
How do we know the size of finite sets? For finite sets, the definition of size captures 
the notion of the number of elements. If we denote the size of the set X as |X|, |X| 
simply counts the number of elements in the set X. For example,

|{1, 2, 3, 4}| = 4 
|{1, 8, 56, 947, 2013}| = 5 
|{dog, cat, elephant}| = 3

Therefore it is not difficult to think about the size of finite sets: you just count the 
number of elements in the set. It is also very easy to compare the size of two different 
sets. If two sets X and Y satisfy |X| = m and |Y | = n with m < n, then we could simply 
say that Y has more elements than X. Such an argument is quite valid and pretty much 
enough when we are dealing with finite sets. However, when we have to discuss infinite 
sets, the same approach works no more. What does it means to count the number of 
infinite sets? N = {1, 2, 3, · · · } obviously has no natural number corresponding to its 
size. Can we just say |N| = ∞? But we did not even define ∞. Even if we did, a new 
problem arises: how will we compare the sizes of infinite sets? Is |N| = |{2, 3, 4, · · · }| = 
∞? Is |N| = |{1, 4, 9, · · · }| = ∞?Is |N| = |{2, 4, 6, · · · }| = ∞? Do all infinite sets have the 
same size, namely ∞? To answer all these questions and to avoid contradictions, we 
have to examine the notion of the size of sets in a different way. 
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This is really a function because every element in A has found its match in B. The 
matches are not equal, but that is okay. But this function is not really interesting for 
our discussion of the size of sets. So let us modify this function a little bit. Let us say 
f(3) = 8 instead of f(3) = 1. Then different elements of A has different matches in B. 
Such functions are called one-to-one. Because for one-to-one functions we have to find 
a different match for every element in A, we could see that B has to have at least as 
many elements in A, or we will run out of diffe rent elements in B to be a match of 
elements in A.
This is true for any sets! So if there exists a one-to-one function from set X to Y , |X| ≤ 
|Y |

This time let us look at the other property. Let us define a function g from A to C (g : 
A → C).
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3 A New Way to Compare Sizes of Sets

Our new approach is to look at the functions from one set to another. Let X and Y 
be our sets, and see how functions can tell us about their relative sizes.
A function is a mapping from the elements of X to the elements of Y . That is, for each 
x 2 X, wend its unique match, partner, or value from Y . We call this match f(x), and it 
is one of the elementsy 2 Y . Saying that function f is from X into Y means that every 
element in X has a match in Y . Note that one element in X cannot have two matches, 
but the matches could be equal for dierent elements of X. Not all elements of Y have 
to be a match of some element of X. But if the two properties above actually do hold, 
then a function is special, and it reveals facts about the sizes of sets X and Y .

Let us use our examples above. Let A = {1, 2, 3, 4}, B = {1, 8, 56, 947, 2013}, C = 
{dog, cat, elephant}. Note that A, B, C are sets, not the sizes of the sets. Let’s define a 
function f from A to B, or more concisely f : A → B, as follows.

f(1) = 56
f(2) = 1
f(3) = 1
f(4) = 2013

g(1) = cat
g(2) = dog
g(3) = cat
g(4) = elephant



This is certainly a function. Also, for every element in C, there is an element in A that 
has its match as that element. 1 and 3 has match cat, 2 has match dog, 4 has match 
elephant. That covers all of the elements in C. A function satisfying such a property is 
called onto. Because for onto functions we have to find a match for every element in C, 
A should have at least as many elements in C, or we will run out of elements in A and 
some elements in C will not be matches of any elements in A. Remember that one 
element in A cannot have two matches, so for each element in C we need to find a 
different element in A.
This is also true for any sets! So if there exists a onto function from set X to Y , |X| ≥ 
|Y| 

Or we could just say this is our definition of ≤ and ≥ for size of sets. From now on, we 
do not count the elements in the sets we are interested in, but we just see if we could 
find a special function from one to another. Basically, what we are doing here is 
choosing one element from each set and match them, until one of the set runs out of 
elements. 

Especially, if we could find a function that is both one-to-one and onto, this would 
imply |X| ≤ |Y |and |X| ≥ |Y |. In other words, |X| = |Y |. Now we have built a new way 
to compare the sizes of sets, and we could expand this definition to all sets. We could 
now compare the size of infinite sets!
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4 Comparing the Size of Sets

Now that we have the appropriate machinery to work on sizes of any sets, let’s get to 
work!First of all, we could now precisely define finite sets as sets with size equal to |{1, 
2, · · · , n}| for some natural number n ∈ N. We could also easily check that any finite 
set has smaller size than N, because we can never find an onto function from a finite set 
to an infinite set. We could also answer some of our original questions.

• Is |N| = |{2, 3, 4, · · · }|? Yes, f(n) = n + 1 is both one-to-one and onto.

• Is |N| = |{1, 4, 9, · · · }|? Yes, f(n) = n2 is both one-to-one and onto.
• Is |N| = |{2, 4, 6, · · · }|? Yes, f(n) = 2n is both one-to-one and onto.

What? This is ridiculuous! What we have just shown is that N has the same size as 
its subsets that lacks some elements in the original set of natural numbers(proper 
subsets). The whole has the same size as its small part. This may be quite counter-
intuitive, and even great mathematicians such as Gottfried Leibniz, the inventor of 
calculus, saw this fact as an outright contradiction. But using our new comparison 
standard, this turns out to be true. Infinite sets behave strangely.



 24

In fact, even more unbelievable facts are waiting. We showed that some simple infinite 
subsets of N have the same size as N. It is not hard to show that any subset of N is 
either finite or has the same size as N. How about sets containing N?

In particular, let us look at the set of integers, Z = {· · · , −2, −1, 0, 1, 2, · · · }. If we 
could find a one-to-one, onto function from N to Z, then |N| = |Z|. This set seems to 
have at least twice the elements of N and the chance of finding such function seems 
miserable. However, if we define f : N → Z as

f(1) = 0
f(2) = 1
f(3) = −1
f(4) = 2
f(5) = −2

· · ·

But even more crazy results are waiting. 
How about Q = { p/q : p ∈ Z, q ∈ N} Defining f : N → Q that is one-to-one and onto is 
more tricky. This time we order the rational numbers so that numbers using only 1 and −1 
appears first, then the ones with 2 and −2, and so on. Of course we have to leave out the 
ones that appeared earlier. In other words, order the rationals in the following way:
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This ordering is itself a function from N to Q. It is certainly one-to-one. It is also not 
hard to see that all rational numbers will some time appear in this list, meaning that 
the function is onto. So |N| = |Q|. 
If you think about it for a while, this is a very surprising fact. Clearly N ⊂ Z ⊂ Q, but |
N| = |Z| = |Q|. This can never happen in finite sets, but with our new definition of 
comparing the size of sets allows us to derive such interesting results.
At this point, you may be curious if there are any infinite sets strictly greater than N in 
size. Sets as large as the Q that is large enough to densely occupy the whole real line 
has the same size with N. What can come next? Our following discussion is about sets 
larger than the set of natural numbers.

5 |R| > |N|

The real numbers is the set that has a strictly larger size than N. How do we show 
this? There is an obvious one-to-one function from N to R, namely f(n) = n. 

We could easily see that f is both one-to-one and onto. So |N| = |Z|. 



So certainly |N| ≤ |R|. If we cannot find a function that is both one-to-one and onto, then 
this will give us the fact that the reals are larger than the naturals.
In fact, we can never find an onto function from N to R. So particularly there are no 
functions that are both one-to-one and onto. Let us assume that there is an onto 
function f : N → R. If we could derive a contradiction from here, this will imply that 
our assumption was wrong, and therefore there are no such onto functions.
Since f is onto, each natural number has its real number match. This real number can 
be written in a decimal expansion: something like 3187.128398 · · · , 1.25765, 
0.00012382 · · · . Now we construct a new real number as follows:

• Let this real number be between 0 and 1. So it is in the form of 0.????? · · · .

• Look at f(1)’s tenth(0.1) digit. If it is equal to 0, let the tenth digit of our number be
1. If it is not, let the hundredth digit be 0..

• Look at f(2)’s hundredth(0.01) digit. If it is 0, our number gets 1 for the
hundredth digit. If it is not, our number gets 0.

• Look at f(3)’s thousandth(0.001) digit. If it is 0, our number gets 1 for the
thousandth digit. If it is not, our number gets 0.

• Do the same thing for every n.

If we do this process, we get a new real number r with digits being either 0 or 1. Since f 
is onto, r must have a natural number n such that f(n) = r. However, this is impossible, 
because r and f(n) differs in the nth digit below 0. If f(n) has 0 at that digit, r has 1. If 
f(n) has any other number at that digit, r has 0. So this is a contradiction, and we cannot 
find an onto function from N to R. So |N| < |R|. This elegant argument is called the 
Cantor’s Diagonalization.

So we have an infinite set larger than the set of natural numbers! In fact, we can find a 
set larger than |R|, a set larger than that set, and so on. There are many more interesting 
facts in set theory that are very surprising, but for this mini lecture I think this will be 
sufficient. If you have any questions or feedbacks, feel free to send me an e-mail.

6 Miscellaneous (Technical Issues)
• Size of sets are usually called cardinality.

• Usually set theorists include 0 in N, but we did not.

• One-to-one functions are also called injections, and onto functions are also called
surjections. If a function is both injective and surjective, it is called a bijection.

• Actually we were quite wrongfully using the notation ≤ and ≥ when we were talking
about one-to-one functions and onto functions. It is much better to just say |X| ≤ |Y | 
if there is an one-to-one function from X to Y and define ≥ similarly. This is because 
of the Cantor-Bernstein-Schroeder Theorem which states that if there is an injection 
from X to Y and an injection from Y to X then |X| = |Y |. So using this definition we 
have |X| ≤ |Y | and |X| ≥ |Y | implies |X| = |Y |. This is not true for our definition 
unless we assume the Axiom of Choice, an extremely strong mathematical axiom.
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